
Programmatic Implementation of the Karmarkar’s Algorithm for
Vacation Package Synthesis Process Optimization

H.Ganepola1, J. Padukka2, R. Prasad3, L. Samarakoon4

Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa, Sri Lank a

 hasini.ganepola@uom.lk
1
, janaka.padukka@uom.lk

2
, rajeev.prasad@uom.lk

3
, lahiru.samarakoon@uom.lk

4

Abstract

Vacation Packages are a basic component of the

modern travel industry. Putting together a set of

vacation packages, which can generate the highest

revenue to the tour operator, is a hectic task which will

need a lot of man hours.

In this paper, we present a linear programming

approach which ensures the maximum revenue to the

tour operator, where all the contract constraints are

satisfied. From LP model formulation to the solving

algorithm and its results will be presented in this

paper. Karmarkar’s Projective Scaling algorithm,

which is the solving algorithm will be explained in the

process, with its implementation approach

1. Introduction

Mathematical Optimizat ion techniques are highly

utilized in modern revenue based global economy, to

ensure the healthy running of the businesses. In this

paper, our focus is to introduce such a scenario in

travel industry, where the mathemat ical optimization

technique, widely known as Linear Programming, is

utilized to ensure high profits for the tour operators.

Majority of the linear programming problems are

solved mainly using the primal/dual simplex method

due to the underlying linear programming structure.

And also with the increase of the no. of variables in the

problem, simplex methods complexity becomes

exponential. First polynomial time algorithm to solve a

LP problem was introduced in 1979 by L.G.

Khachiyan. But with Khachian’s method[4],[5] is

computational experience with it and its variants has

been very disappointing. This has contributed to the

realization that one ought to consider as “efficient”

only low-order polynomial algorithms, perhaps those

which are also strongly or genuinely polynomial. The

practical performance of the Khachian’s algorithm is

strongly connected with its theoretical worst-case

bound. Magnitude of the input data is connected with

the efficiency of it. It has been found that even

problems with about 100 variables can require an

enormous amount of effort. In 1984, a new algorithm

was presented by N. Karmarkar, which is an interior

point method[1] like Khachiyan’s one with a

polynomial time complexity O(n
3.5

L)[4]defeating

O(n
6
L).[5]

Khachian’s ellipsoid method and Karmarkar’s

projective scaling method seek the optimum solution to

an LP problem by moving through the interior of the

feasible region. A schematic diagram illustrating the

algorithmic differences between the Simplex and the

Karmarkar’s algorithm is shown in figure 1.

Khachian’s ellipsoid method approximates the

optimum solution of an LP problem by creating a

sequence of ellipsoids (an ellipsoid is the

multid imensional analog of an ellipse) that approach

the optimal solution. [3]

Figure 1- Difference in optimum search path between

Simplex and Karmarkar’s Algorithm

Both Khachian’s ellipsoid method and Karmarkar’s

projective scaling method have been shown to be

polynomial time algorithms. This means that the time

required to solve an LP problem of size n by these two

methods would take at most where an
b
 and b are two

positive numbers.

On the other hand, the Simplex algorithm is an

exponential time algorithm in solving LP problems.

This implies that, in solving an LP problem of size n

by Simplex algorithm, there exists a positive number c

such that for any n, the Simplex algorithm would find

its solution in a time of at most c2
n
. For a large enough

n (with positive a, b and c), c2
n
>an

b
. This means that,

in theory, the polynomial time algorithms are

computationally superior to exponential algorithms for

large LP problems.[3]

In this paper our focus it to model and implement the

solver for the linear programming problem, which will

be explain in the next section, by the computationally

much feasib le Karmarkar’s Algorithm.

2. Background

Travel industry is a very expanded and highly

revenue generating economic entity in most of the

countries around the world. Supply chain of the travel

industry consists of the suppliers such as airlines,

hotels and transfer companies which provide their

inventory to the tour operators, where they sold them

to the tour agencies as vacation packages to be sold to

the customers. The vacation packages are a

combination of elements and the permutations that can

be achieved using the different options in the contracts

that are signed between suppliers and tour operators.

In order to put up a set of vacation packages, which

would earn the highest revenue to the tour operator, is

a very important step. For that purpose, tour operators

have setup product planning departments, which needs

a great deal of human intuition as well as the historical

data on the passenger interests.

The objective of this paper is to find the optimum

combination of elements from the various available

contractual elements such that the maximum yield and

revenue can be achieved using the linear programming

approach for the optimizat ion.

2. LP Model of Vacation Package Synthesis

Process

In this section, the main idea is to formulate the linear

programming problem, which incorporates with the

vacation package synthesis process. For simplicity, the

model will be explained using limited no. of vacation

package components.

Let’s consider a scenario where, one departure city,

two airlines and two destination cities with two hotels

in each city. Figure 2, shows the no. of vacation

package combinations, which can be built using these

components.

Figure 2- Vacation Package Generation

Considering contract information incorporated with the

components and vacation package combinations. The

linear programming problem can be formulated in two

steps.

2.1 Formulation of Constraints
Tour operators are contracted with suppliers on the

vacation package components. Therefore the no. of

vacation packages generated using specific

components will be constrained.

For example,

Let SD,A,Dest,d be the no.of seats available on flight A,

which departs from D, to destination Dest on day d.

 And

Let XD,A,Dest,H,d be the no. of passenger who are willing

to travel on airline A, from departure D to destination

Dest on day d and want to stay at hotel H.

Let’s assume the packages are single. And there for the

no of packages will be equal to the no. of passengers.

Now let’s consider the airline A1, from departure city

Dep to Dest1. As the no. of occupants for airline A1,

for day d from Dep to Dest1 should be less than or

equal to the no. on the contract, using the same

notation we can say,

XDep,A1,H1,d + XDep,A1,H2,d <= SDep,A1,Dest1,d

A1

Des 1

Des 2

A2

H 2

Des 1

Dep

Des 2

H 1

H 2

H 1

H 2

H 1

H 2

H 1

Package 2

Package 1

Package 4

Package 3

Package 5

5

Package 6

6

 Package 7

7

Package 8

8

Above constraint represents the supplier contract for

airline A1. In this manner, constraints can be

formulated for the other package components as well.

The unique combination of Dep,A1,H1,d will

represents the incorporated package in this scenario.

2.2 Formulation of the Objective Function

The main idea of the objective function is to

maximize the overall profit gained by the generated

vacation packages.

Let’s consider the vacation package Dep,A1,Dest1,H1

used in constraint formulation and denote it as P1.

Then,

The cost of P1 = Hotel Cost + Flight Cost

The profit of P1 = Profit Marg in* The cost of P1

Let p1 be the marginal probability of buying package

P1 and x1 be the no. vacation package allocations.

Then for packages P1 to P8, the total profit can be

obtained by,

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑝𝑖 ∗

8

𝑖=1

𝑃𝑟𝑜𝑓𝑖𝑡 𝑜𝑓 𝑃𝑖 ∗ 𝑥 𝑖

The objective function for optimization will be the

above one. That is Maximize Total Profit, subjected to

constraints of the form explained in the previous

section.

3. Karmarkar’ Algorithm

This section focuses on the details of the

Karmarkar’s Algorithm, which we used as the solving

algorithm and the transformation algorithm of the

standard LP problem formulated in the previous

section to the Karmarkar’s canonical form.

3.1 Algorithm and Its Canonical Form
Karmarkar’s projective scaling method starts with a

trial solution and shoots it towards the optimum

solution.

To apply the Karmarkar’s algorithm, LP problem

should be expressed in the following form.

Minimize 𝑍 = 𝐶 𝑇 𝑋

Subjected to: 𝐴𝑋 = 0

 𝟏𝑋 = 1

With: 𝑋 ≥ 0

Where,𝑋 =

𝑥1

𝑥2

⋮
𝑥𝑛

 , 𝐶 =

𝑐1

𝑐2

⋮
𝑐𝑛

 , 𝟏 = 1 1 … 1
(1×𝑛)

𝐴 =

𝑐11 𝑐12 … 𝑐1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

⋮ ⋮ ⋱ ⋮
𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑛

 𝑎𝑛𝑑 𝑛 ≥ 2

It is assumed that, 𝑋0 =

1

𝑛

1
𝑛

⋮
1

𝑛

is a feasible solution and 𝑍𝑚𝑖𝑛 = 0, and the two other

variables are defined as,

𝑟 =
1

 𝑛(𝑛 − 1)
 , 𝛼 =

(𝑛 − 1)

3𝑛

Iterative steps are involved in Karmarkar’s Algorithm

to find the optimal solution ,

In general, k
th

 iteration involves following

computations.

1. Compute 𝐶𝑝 = 𝐼 − 𝑃𝑇 (𝑃𝑃𝑇)𝑃 𝐶 𝑇

Where,

𝑃 = 𝐴𝐷𝑘

1
 , 𝐶 = 𝐶𝑇𝐷𝑘 𝑎𝑛𝑑

𝐷𝑘 =

𝑋𝑘 (1) 0 0 0

0 𝑋𝑘 (2) 0 0
0 0 ⋱ 0
0 0 0 𝑋𝑘 (𝑛)

If 𝐶𝑝 = 0, any feasible solution becomes and optimal

solution. Further iteration is not required. Otherwise

followings should be computed.

2. 𝑌𝑛𝑒𝑤 = 𝑋0 − 𝛼𝑟
𝐶𝑝

 𝐶𝑝

3. 𝑋𝑘 +1 =
𝐷𝑘 𝑌𝑛𝑒𝑤

1𝐷𝑘 𝑌𝑛𝑒𝑤
, for k= 0,

𝐷𝑘 𝑌𝑛𝑒𝑤

1𝐷𝑘 𝑌𝑛𝑒𝑤
= 𝑌𝑛𝑒𝑤

Thus, 𝑋1 = 𝑌𝑛𝑒𝑤

4. 𝑍 = 𝐶𝑇𝑋𝑘+1

5. Repeat steps 1 to 4 by changing k=k+1[1],[2]

3.2 Transformation Logic

Let 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {𝑐𝑥 : 𝐴𝑥 = 𝑏 , 𝑥 ≥ 0} be the standard LP

problem.

Here A is the LHS of the constraint matrix, with mxn

dimension with rank m.

Then dual of the above can be given as,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑏𝑥 : 𝐴𝑇𝑤 = 𝑏 , 𝑤 ≥ 0}

Objective equality constraint become,

𝑐𝑥 − 𝑏𝑤 = 0, 𝑥 ≥ 0, 𝑤 ≥ 0

Introduction of bounding constraint to regularize the

problem,

 𝑥 + 𝑤 ≤𝑄

Here Q may be taken as some known small integer

bound on the sum of variables, derived from feasibility

and/or optimality considerations. In the worst case,

𝑄 = 2𝐿 where L is the number of binary b its required

to record all the data of the problem and is known as

the input length of an instance of the problem.

𝐿 = 1 + log 1 + 𝑚 + 1 + log 1 + 𝑛

+ {1 + [log(1 + 𝑐𝑗)]}
𝑗

+ 1 + 1 + log 1 + 𝑎𝑖𝑗

𝑗𝑖

+ {1 + [log(1 + 𝑏𝑗)]}
𝑗

Adding this constraint along with a slack variab le s 1,

we may write the equation as follows.

 𝑥 + 𝑤 + 𝑠1 = 𝑄

Then the introduction of the dummy variab le s2 with

the constraint, s2 = 1 to rewrite the constraints,

𝐴𝑥 − 𝑏𝑠2 = 0, 𝐴𝑇𝑤 − 𝑐𝑠2 = 0, 𝑠2 = 1,

1𝑥 + 𝑠1 + 𝑠2 = 𝑄 + 1 and

 𝑥 + 𝑤 + 𝑠1 + 𝑄𝑠2 = 0

Where, 𝑥 ≥ 0, 𝑤 ≥ 0, 𝑠1 ≥ 0, 𝑠2 ≥ 0

As the next step, we use a change of variables defined

by,

𝑥 𝑖 = 𝑄 + 1 𝑦𝑖 𝑎𝑛𝑑 𝑤𝑗 = 𝑄 + 1 𝑦𝑗

This gives the system,

𝐴𝑦 − 𝑏𝑦2 𝑚 +𝑛 +2 = 0,

𝐴𝑇𝑦 − 𝑐𝑦2 𝑚 +𝑛 +2 = 0,

 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖 − 𝑏𝑗𝑦𝑖

2𝑚 +𝑛+1

𝑖=𝑚 +𝑛+1

𝑚

𝑗 =1

= 0,

 𝑦𝑖 − 𝑄𝑦2 𝑚+𝑛 +2

2 𝑚+𝑛 +1

𝑖=1

= 0,

 𝑦𝑖

2 𝑚+𝑛 +2

𝑖=1

= 1,𝑦𝑖 ≥ 0

Finally introducing the artificial variable y2(m+n)+3 with

coefficients such that the sum of the coefficients in

each homogeneous constrain is zero and

accommodating y2(m+n)+3 in the final equality constrain,

we get the problem in the Karmarkar’s Canonical

Form.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑦2 𝑚 +𝑛 +3

Subjected to;

𝐴𝑦 − 𝑏𝑦2 𝑚 +𝑛 +2 − 𝐴1𝑇 − 𝑏 𝑦2 𝑚 +𝑛 +3 = 0,

𝐴𝑇𝑦 − 𝑐𝑦2 𝑚 +𝑛 +2 − 𝐴𝑇 1− 𝑏 𝑦2 𝑚 +𝑛 +3 = 0,

 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖 − 𝑏𝑗𝑦𝑖

2𝑚 +𝑛+1

𝑖=𝑚+𝑛+1

𝑚

𝑗 =1

− [𝑐𝑖

𝑛

𝑖=1

− 𝑏𝑗

𝑚

𝑗 =1

]𝑦2 𝑚 +𝑛 +3 = 0,

 𝑦𝑖 − 𝑄𝑦2 𝑚+𝑛 +2

2 𝑚+𝑛 +1

𝑖=1

− [2 𝑚 + 𝑛 + 2

− 𝑄]𝑦2 𝑚+𝑛 +3 = 0,

 𝑦𝑖 = 1

2 𝑚 +𝑛 +3

𝑖=1

𝑎𝑛𝑑 𝑦𝑖 ≥ 0, 𝑖 = 1,2, … ,2 𝑚 + 𝑛 + 3 [2]

4. Implementation Approach

Implementation of the solution can be divided into

three major parts as,

 LP Problem Formulation

 Transformer Logic

 Solver Logic

 Retranformer Logic

In the LP Prob lem Formulation, the contract data

extraction for the formulation of the vacation packages,

constraints and the objective function are carried out.

The outputs of this module are the three matrices

which represent the standard LP problem, the objective

matrix, constraint LHS matrix and the constraint RHS

matrix.

On the reception of the above three matrices,

transformer module’s job is to convert it to the

Karmarkar’s Canonical Form, which can be solved by

the Solver. The core logic of the transformer is

described in section 3.2. Output of the transformer is

the LP problem, which is in the Karmarkar’s Canonical

Form. In the implementation, the output is given as a

matrix which can be handled easily by the Solver,

which is highly capable of matrix operations.

Solver’s logic is highly incorporated with matrix

manipulations. Therefore in the implementation of the

Solver, matrix operations are implemented in separate

classes and the algorithm is implemented in the Solver

class, which contains the procedural algorithm

explained in section 3.1.

At last by the Retransformer, the solved solution

matrix given by the Solver will be mapped into the

original LP problem generated by the LP Problem

Formulator. Output of this is used to reporting

purposes.

5. Performance Improvement Techniques

In this section, idea is to present the techniques used

in improving the performance of the overall system.

These techniques include the algorithmic techniques as

well as the implementation specific techniques related

to java.

 Matrix Representation and Operations

 Matrix representation of this system was done in

object oriented manner. The matrix is represented

within the class by using a double two dimensional

array. Due to the memory structure of the java array, in

traversing the matrix, it has be proven that row wise

traversing takes less time than column wise traversing.

Therefore in this implementation, in traversing the

matrix, row wise approach is taken to ensure high

performance.

 The choice of the matrix inversion algorithm was

another decision, where the performance can be

degraded. In this implementation, in computing the

matrix inverse LU and QR decomposition was used.

LU decomposition was used when the matrix is square

and QR was used when it is used. For a square matrix

of nxn, LU decomposition is speeds up calculation by

n/4 times than the famous Gaussian Elimination. [7]

 Multi threading

In the Transformat ion process, formulation of the

Karmarkar's constrain matrix is implemented

concurrently with the help of multi threading. Mult i

Threading the sequential algorithm of transforming the

general linear programming problem into Karmarkar's

canonical form is quite challenging and interesting.

First approach used in achieving this goal of multi-

threaded algorithm was to analyze the steps of the

general algorithm to identify the steps that can be

executed in parallel. Further analysis was focused on

identifying the steps that can be interchanged without

affecting the final result. Results obtained from the

analysis were used to introduce the best way of

implementing the multi core version of the algorithm.

In implementing this , the java executor framework was

used.

 Efficient Java Programming Techniques

In Java arrays differ from generic types in two

important ways. First, arrays are covariant, which

means simply that if Sub is a subtype of Super, then

the array type Sub[] is a subtype of Super[]. Generics,

by contrast, are invariant: for any two distinct types

Type1 and Type2, List<Type1> is neither a subtype

nor a supertype of List<Type2>. A lso arguably arrays

are deficient compared to generics.[8]

 These Java language specific details encouraged the

usage of Java Lists instead of arrays in every possible

occasion in the implementation. Further, the type

safeness in generics is used to avoid runtime

exceptions which can occur in arrays due to type

confusion.

6. Performance Results

The results presented in this section is based on the

following testing environment.

Processor - Intel Core 2 Duo 1.83GHz

Memory - 2GB

Operating System- Windows XP

The results presented here are focused only on the

solving of the standard LP problem provided by the LP

Problem Formulator exp lained in section 4.

6.1 Tranformer Performance
The standard LP problem generated has to be

transformed into the Karmarkar’s Canonical form in

order to solve it by the solver. Therefore overall

performance of the solving of the LP problem is

dependent on the performance of the transformer. In

this implementation, as mentioned in section 5,

transformer is has two versions of implementations, the

single core and the dual core version. The version,

which will be running is dependent on the

environment. Tab le 1 contains test results for the

transformer.

Packages Single Core(ms) Dual Core(ms)

100 71 63

250 107 91

500 222 153

1000 1136 1008

1500 2832 2224

2000 5773 5058

2500 9988 8602

3000 32797 24121

Table 1 - Tranformer Performance

Graphed results are presented in figure 3

Figure 2 Tranformer Performance

6.2 Overall Solving Performance
 Table 2, represents the overall performance of the LP

problem solver including the transforming time.

No. of Packages Solving Time(s)

25 5

50 12

75 24

100 41

125 61

150 89

175 112

200 155

225 210

250 290

Table 2 - Solver Performance

Figure 3 Solver Performance

7. Conclusion

By this it is evident that, Karmarkar’s Pro jective

Scaling Algorithm can be efficiently implemented in a

programmat ic way to solve real world large scale

linear programming problems.

The Transformer and the Solver of this

implementation in isolation can be easily used as linear

programming problem solver due to the modularized

implementation.

In this problem instance for the tour operator, the

product planning cost can be lessoned, in the mean

time being able to produce highly profitable set of

vacation packages, so that the vacation package

synthesis process will optimized ensuring high profits

to the tour operator.

8. Acknowledgements

The authors wish to acknowledge the great

guidance and support given by Dr. Shehan Perera, Mr.

Yohan Welikala and Mr. Kishan Wimalarne for the

successful completion of this effort .

9. References

[1] N.Karmarkar “A New Polynomial-time Algorithm for

Linear Programming”, Combrinatorica, 4, pp. 373-395, 1984

[2] N.Karmarkar and K.G. Ramakrishnan, “Implementation

and Computational Results of the Karmarkar Algorithm for
Linear Programming, Using an Iterative M ethod for

Computing Projections”,13th International Math. Prog.

Symposium, Tokyo, Japan, August 1988.

[3] Edwin K.P. Chong, Stanislaw H. Zak, “An Introduction
to Optimization”, A Wiley-lnterscience Publication 2001

 [4] Khachiyan, L. G., “A Polynomial Algorithm for Linear

Programming,” Doklady Akad.Nauk USSR 244, 1093–1096,

1979, pages 1093–1096, Translated in Soviet Math.
Doklady 20, 1979, pages 191–194

[5] S. Wright: Interior - Point Methods, Computer Sciences

Department, University of Wisconsin - Madison, 2002.

[6] David G. Luenburger, Yinyu Ye, “Linear and Nonlinear

Programming-Third Edition”, Springer Publication 2007

[7] “Numerical Methods for the STEM Undergraduate,”

[Online]. Available:
http://numericalmethods.eng.usf.edu/topics/lu_decompositio

n.html [Accessed: July 7 2008].

[8] Joshua Bloch, “Effective Java-Second Edition”, Addison-

Wesley Publication 2001

http://numericalmethods.eng.usf.edu/topics/lu_decomposition.html
http://numericalmethods.eng.usf.edu/topics/lu_decomposition.html

