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Abstract 
 

Vacation Packages are a basic component of the 

modern travel industry. Putting together a set of 

vacation packages, which can generate the highest 

revenue to the tour operator, is a hectic task which will 

need a lot of man hours. 

In this paper, we present a linear programming 

approach which ensures the maximum revenue to the 

tour operator, where all the contract constraints are 

satisfied. From LP model formulation to the solving 

algorithm and its results will be presented in this 

paper. Karmarkar’s Projective Scaling algorithm, 

which is the solving algorithm will be explained in the 

process, with its implementation approach  

 

1. Introduction 
 

Mathematical Optimizat ion techniques are highly 

utilized in modern revenue based global economy, to 

ensure the healthy running of the businesses. In this 

paper, our focus is to introduce such a scenario in 

travel industry, where the mathemat ical optimization  

technique, widely known as Linear Programming, is 

utilized to ensure high profits for the tour operators. 

Majority of the linear programming problems are 

solved mainly using the primal/dual simplex method 

due to the underlying linear programming structure. 

And also with the increase of the no. of variables in the 

problem, simplex methods complexity becomes 

exponential. First polynomial time algorithm to solve a 

LP problem was introduced in 1979 by L.G. 

Khachiyan. But with Khachian’s method[4],[5] is 

computational experience with it and its variants has 

been very disappointing. This has contributed to the 

realization that one ought to consider as “efficient” 

only low-order polynomial algorithms, perhaps those 

which are also strongly or genuinely polynomial. The 

practical performance of the Khachian’s algorithm is 

strongly connected with its theoretical worst-case 

bound. Magnitude of the input data is connected with 

the efficiency of it. It has been found that even 

problems with about 100 variables can require an  

enormous amount of effort. In 1984, a new algorithm 

was presented by N. Karmarkar, which is an interior 

point method[1] like Khachiyan’s one with a 

polynomial time complexity O(n
3.5

L)[4]defeating  

O(n
6
L).[5] 

Khachian’s ellipsoid method and Karmarkar’s 

projective scaling method seek the optimum solution to 

an LP problem by moving through the interior of the 

feasible region. A schematic diagram illustrating the 

algorithmic differences between the Simplex and the 

Karmarkar’s algorithm is shown in figure 1. 

Khachian’s ellipsoid method approximates the 

optimum solution of an LP problem by creating a 

sequence of ellipsoids (an ellipsoid is the 

multid imensional analog of an ellipse) that approach 

the optimal solution. [3] 

 

 
Figure 1- Difference in optimum search path between 

Simplex and Karmarkar’s Algorithm 

Both Khachian’s ellipsoid method and Karmarkar’s 

projective scaling method have been shown to be 

polynomial time algorithms. This means that the time 

required to solve an LP problem of size n by these two  

methods would take at most where an
b
 and b are two 

positive numbers.  

On the other hand, the Simplex algorithm is an 

exponential time algorithm in solving LP problems. 

This implies that, in solving an LP problem of size n  

by Simplex algorithm, there exists a positive number c  

such that for any n, the Simplex algorithm would find  



its solution in a time of at most c2
n
. For a large enough 

n (with positive a, b and c ), c2
n
>an

b
. This means that, 

in theory, the polynomial time algorithms are 

computationally superior to exponential algorithms for 

large LP problems.[3]  

In this paper our focus it to model and implement the 

solver for the linear programming problem, which will 

be explain in the next section, by the computationally 

much feasib le Karmarkar’s Algorithm. 

 

 

2. Background 
 

Travel industry is a very expanded and highly 

revenue generating economic  entity in most of the 

countries around the world. Supply chain of the travel 

industry consists of the suppliers such as airlines, 

hotels and transfer companies which provide their 

inventory to the tour operators, where they sold them 

to the tour agencies as vacation packages  to be sold to 

the customers. The vacation packages are a 

combination of elements and the permutations that can 

be achieved using the different options in the contracts 

that are signed between suppliers and tour operators. 

In order to put up a set of vacation packages, which 

would earn the highest revenue to the tour operator, is 

a very important step. For that purpose, tour operators 

have setup product planning departments, which needs 

a great deal of human intuition as well as the historical 

data on the passenger interests.  

The objective of this paper is to find the optimum 

combination of elements from the various  available 

contractual elements such that the maximum yield and 

revenue can be achieved using the linear programming  

approach for the optimizat ion. 

 

2. LP Model of Vacation Package Synthesis   

Process 
 

In this section, the main idea is to formulate the linear 

programming problem, which incorporates with the 

vacation package synthesis process. For simplicity, the 

model will be explained using limited no. of vacation 

package components. 

Let’s consider a scenario where, one departure city, 

two airlines and two destination cities with two hotels 

in each city. Figure 2, shows the no. of vacation 

package combinations, which can be built using these 

components. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Vacation Package Generation 

 

 

Considering contract information incorporated with the 

components and vacation package combinations. The 

linear programming problem can be formulated in two  

steps. 

 

2.1 Formulation of Constraints 
Tour operators are contracted with suppliers on the 

vacation package components. Therefore the no. of 

vacation packages generated using specific 

components will be constrained.  

 

For example, 

 

Let SD,A,Dest,d  be the no.of seats available on flight A, 

which departs from D, to destination Dest on day d. 

 And 

Let XD,A,Dest,H,d be the no. of passenger who are willing  

to travel on airline A, from departure D to destination 

Dest on day d and want to stay at hotel H.  

 

Let’s assume the packages are single. And there for the 

no of packages will be equal to the no. of passengers. 

 

Now let’s consider the airline A1, from departure city 

Dep to Dest1. As the no. of occupants for airline A1, 

for day d from Dep to Dest1 should be less than or 

equal to the no. on the contract, using the same 

notation we can say, 

 

XDep,A1,H1,d   + XDep,A1,H2,d  <= SDep,A1,Dest1,d   
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Above constraint represents the supplier contract for 

airline A1. In this manner, constraints can be 

formulated for the other package components as well.  

The unique combination of Dep,A1,H1,d will 

represents the incorporated package in this scenario. 

 

2.2 Formulation of the Objective Function 
 

The main idea of the objective function is to 

maximize the overall profit gained by the generated 

vacation packages. 

 

Let’s consider the vacation package Dep,A1,Dest1,H1  

used in constraint formulation and denote it as P1.  

 

Then, 

The cost of P1 = Hotel Cost + Flight Cost 

 

The profit of P1 = Profit Marg in* The cost of P1  

 

Let p1 be the marginal probability of buying package 

P1 and x1 be the no. vacation package allocations. 

 

Then for packages P1 to P8, the total profit can be 

obtained by, 

 

𝑇𝑜𝑡𝑎𝑙  𝑃𝑟𝑜𝑓𝑖𝑡 =  𝑝𝑖 ∗

8

𝑖=1

𝑃𝑟𝑜𝑓𝑖𝑡  𝑜𝑓  𝑃𝑖 ∗ 𝑥 𝑖 

 

The objective function for optimization will be the 

above one. That is Maximize Total Profit, subjected to 

constraints of the form explained in the previous 

section. 

 

 

3. Karmarkar’ Algorithm 
 

This section focuses on the details of the 

Karmarkar’s Algorithm, which we used as the solving 

algorithm and the transformation algorithm of the 

standard LP problem formulated in the previous 

section to the Karmarkar’s canonical form.  

 

 

3.1 Algorithm and Its Canonical Form 
Karmarkar’s projective scaling method  starts with a 

trial solution and shoots it towards the optimum 

solution. 

To apply the Karmarkar’s algorithm, LP problem 

should be expressed in the following form.  

 

 

 

Minimize          𝑍 = 𝐶 𝑇 𝑋 

 

Subjected to: 𝐴𝑋 = 0 

  𝟏𝑋 = 1 

 

With:  𝑋 ≥ 0 

 

 

Where,𝑋 =   

𝑥1

𝑥2

⋮
𝑥𝑛

  , 𝐶 =   

𝑐1

𝑐2

⋮
𝑐𝑛

 , 𝟏 =  1 1 … 1 
(1×𝑛)    

 

𝐴 =  

𝑐11 𝑐12 … 𝑐1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

⋮ ⋮ ⋱ ⋮
𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑛

  𝑎𝑛𝑑  𝑛 ≥ 2  

 

It is assumed that,       𝑋0 =  

 
 
 
 
 
1

𝑛 

1
𝑛 

⋮
1

𝑛  
 
 
 
 

   

is a feasible solution and 𝑍𝑚𝑖𝑛 = 0, and the two other 

variables are defined as, 

 

𝑟 =
1

 𝑛(𝑛 − 1)
 , 𝛼 =

(𝑛 − 1)

3𝑛
 

 

Iterative steps are involved in Karmarkar’s Algorithm  

to find the optimal solution ,  

 

In general, k
th

 iteration involves following   

computations.    

 

1. Compute 𝐶𝑝 =  𝐼 − 𝑃𝑇 (𝑃𝑃𝑇 )𝑃 𝐶 𝑇 

 

Where, 

 

𝑃 =  𝐴𝐷𝑘

1
 , 𝐶 = 𝐶𝑇𝐷𝑘  𝑎𝑛𝑑   

 

 

𝐷𝑘 =  

𝑋𝑘 (1) 0 0 0

0 𝑋𝑘 (2) 0 0
0 0 ⋱ 0
0 0 0 𝑋𝑘 (𝑛)

  

 

If 𝐶𝑝 = 0,  any feasible solution becomes and optimal  

solution. Further iteration is not required. Otherwise  

followings should be computed. 

 

2. 𝑌𝑛𝑒𝑤 = 𝑋0 − 𝛼𝑟
𝐶𝑝

 𝐶𝑝  
 

 



3. 𝑋𝑘 +1 =
𝐷𝑘  𝑌𝑛𝑒𝑤

1𝐷𝑘  𝑌𝑛𝑒𝑤
, for k= 0, 

𝐷𝑘  𝑌𝑛𝑒𝑤

1𝐷𝑘  𝑌𝑛𝑒𝑤
= 𝑌𝑛𝑒𝑤  

Thus, 𝑋1 = 𝑌𝑛𝑒𝑤  

 

4. 𝑍 = 𝐶𝑇𝑋𝑘+1  

 

5. Repeat steps 1 to 4 by changing k=k+1[1],[2] 

 

  

3.2 Transformation Logic 
 
Let   𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {𝑐𝑥 : 𝐴𝑥 = 𝑏 , 𝑥 ≥ 0} be the standard LP 

problem. 

 

Here A is the LHS of the constraint matrix, with mxn 

dimension with rank m. 

 

Then dual of the above can be given as, 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑏𝑥 : 𝐴𝑇𝑤 = 𝑏 , 𝑤 ≥ 0} 

 

Objective equality constraint become, 

 

𝑐𝑥 − 𝑏𝑤 = 0, 𝑥 ≥ 0, 𝑤 ≥ 0 

 

Introduction of bounding constraint to regularize the 

problem, 

 𝑥 +  𝑤 ≤𝑄  

 

 

Here Q may be taken as some known small integer 

bound on the sum of variables, derived from feasibility  

and/or optimality considerations. In the worst case, 

𝑄 = 2𝐿  where L is the number of binary b its required  

to record all the data of the problem and is known as 

the input length of an instance of the problem. 

𝐿 =  1 + log 1 + 𝑚  +  1 + log 1 + 𝑛  

+  {1 + [log(1 +  𝑐𝑗  )]}
𝑗

+    1 + 1 +  log 1 +  𝑎𝑖𝑗     

𝑗𝑖

+  {1 + [log(1 +  𝑏𝑗  )]}
𝑗

 

 

Adding this constraint along with a slack variab le s 1, 

we may write the equation as follows.  

 
 𝑥 +  𝑤 + 𝑠1 = 𝑄  

 

Then the introduction of the dummy variab le s2 with  

the constraint, s2 = 1 to rewrite the constraints, 

𝐴𝑥 − 𝑏𝑠2 = 0, 𝐴𝑇𝑤 − 𝑐𝑠2 = 0, 𝑠2 = 1, 

 

1𝑥 + 𝑠1 +  𝑠2 = 𝑄 + 1 and 

 

  𝑥 +  𝑤 + 𝑠1 + 𝑄𝑠2 = 0  

 

Where, 𝑥 ≥ 0, 𝑤 ≥ 0, 𝑠1 ≥ 0, 𝑠2 ≥ 0 

 

As the next step, we use a change of variables defined 

by, 

𝑥 𝑖 =  𝑄 + 1 𝑦𝑖  𝑎𝑛𝑑  𝑤𝑗 =  𝑄 + 1 𝑦𝑗   

 

This gives the system, 

𝐴𝑦 − 𝑏𝑦2 𝑚 +𝑛 +2 = 0, 

 

𝐴𝑇𝑦 − 𝑐𝑦2 𝑚 +𝑛 +2 = 0, 

 

 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖 −   𝑏𝑗𝑦𝑖

2𝑚 +𝑛+1

𝑖=𝑚 +𝑛+1

𝑚

𝑗 =1

= 0, 

 

 𝑦𝑖 − 𝑄𝑦2 𝑚+𝑛 +2

2 𝑚+𝑛 +1

𝑖=1

= 0, 

 𝑦𝑖

2 𝑚+𝑛 +2

𝑖=1

= 1,𝑦𝑖 ≥ 0 

 

Finally introducing the artificial variable y2(m+n)+3  with 

coefficients such that the sum of the coefficients in  

each homogeneous constrain is zero and 

accommodating y2(m+n)+3 in the final equality constrain, 

we get the problem in the Karmarkar’s Canonical 

Form. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑦2 𝑚 +𝑛 +3 

 

Subjected to; 

𝐴𝑦 − 𝑏𝑦2 𝑚 +𝑛 +2 −  𝐴1𝑇 − 𝑏 𝑦2 𝑚 +𝑛 +3 = 0, 

𝐴𝑇𝑦 − 𝑐𝑦2 𝑚 +𝑛 +2 −  𝐴𝑇 1− 𝑏 𝑦2 𝑚 +𝑛 +3 = 0, 

 

 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖 −   𝑏𝑗𝑦𝑖

2𝑚 +𝑛+1

𝑖=𝑚+𝑛+1

𝑚

𝑗 =1

− [ 𝑐𝑖

𝑛

𝑖=1

−  𝑏𝑗

𝑚

𝑗 =1

]𝑦2 𝑚 +𝑛 +3 = 0, 

 

 𝑦𝑖 − 𝑄𝑦2 𝑚+𝑛 +2

2 𝑚+𝑛 +1

𝑖=1

− [2 𝑚 + 𝑛 + 2

− 𝑄]𝑦2 𝑚+𝑛 +3 = 0, 

 



 𝑦𝑖 = 1

2 𝑚 +𝑛 +3

𝑖=1

 

𝑎𝑛𝑑  𝑦𝑖 ≥ 0, 𝑖 = 1,2, … ,2 𝑚 + 𝑛 + 3  [2] 

 

 

4. Implementation Approach 
 

Implementation of the solution can be divided into 

three major parts as, 

 LP Problem Formulation 

 Transformer Logic  

 Solver Logic  

 Retranformer Logic  

 

In the LP Prob lem Formulation, the contract data 

extraction for the formulation of the vacation packages, 

constraints and the objective function are carried out. 

The outputs of this module are the three matrices 

which represent the standard LP problem, the objective 

matrix, constraint LHS matrix and the constraint RHS 

matrix. 

On the reception of the above three matrices, 

transformer module’s job is to convert it to the 

Karmarkar’s Canonical Form, which can be solved by 

the Solver. The core logic of the transformer is 

described in section 3.2. Output of the transformer is 

the LP problem, which is in the Karmarkar’s Canonical 

Form. In the implementation, the output is given as a 

matrix which can be handled easily by the Solver, 

which is highly capable of matrix operations. 

Solver’s logic is highly incorporated with matrix 

manipulations. Therefore in the implementation of the 

Solver, matrix operations are implemented in separate 

classes and the algorithm is implemented in the Solver 

class, which contains the procedural algorithm 

explained in section 3.1. 

At last by the Retransformer, the solved solution 

matrix given by the Solver will be mapped into the 

original LP problem generated by the LP Problem 

Formulator. Output of this is used to reporting 

purposes. 

 

5. Performance Improvement Techniques 
 

In this section, idea is to present the techniques used 

in improving the performance of the overall system. 

These techniques include the algorithmic techniques as 

well as the implementation specific techniques related 

to java. 

 

 

 

 

 Matrix Representation and Operations 

   Matrix representation of this system was done in 

object oriented manner. The matrix is represented 

within the class by using a double two dimensional 

array. Due to the memory structure of the java array, in 

traversing the matrix, it has be proven that row wise 

traversing takes less time than column wise traversing. 

Therefore in this implementation, in traversing the 

matrix, row wise approach is taken to ensure high 

performance. 

  The choice of the matrix inversion algorithm was 

another decision, where the performance can be 

degraded. In this implementation, in computing the 

matrix inverse LU and QR decomposition was used. 

LU decomposition was used when the matrix is square 

and QR was used when it is used. For a square matrix 

of nxn, LU decomposition is speeds up calculation by 

n/4 times than the famous Gaussian Elimination. [7] 

 

 Multi threading  

In the Transformat ion process, formulation of the 

Karmarkar's constrain matrix is implemented 

concurrently with the help of multi threading.  Mult i 

Threading the sequential algorithm of transforming the 

general linear programming problem into Karmarkar's 

canonical form is quite challenging and interesting. 

First approach used in achieving this goal of multi-

threaded algorithm was to analyze the steps of the 

general algorithm to identify the steps that can be 

executed in parallel.  Further analysis was focused on 

identifying the steps that can be interchanged without 

affecting the final result. Results obtained from the 

analysis were used to introduce the best way of 

implementing the multi core version of the algorithm. 

In implementing this , the java executor framework was 

used. 

 

 Efficient Java Programming Techniques  

In Java arrays differ from generic types in two 

important ways. First, arrays are covariant, which 

means simply that if Sub is a subtype of Super, then 

the array type Sub[] is a subtype of Super[]. Generics, 

by contrast, are invariant: for any two distinct types 

Type1 and Type2, List<Type1> is neither a subtype 

nor a supertype of List<Type2>.  A lso arguably arrays 

are deficient compared to generics.[8] 

 These Java language specific details encouraged the 

usage of Java Lists instead of arrays in every possible 

occasion in the implementation. Further, the type 

safeness in generics is used to avoid runtime 

exceptions which can occur in arrays due to type 

confusion. 

 

 



6. Performance Results 
 

The results presented in this section is based on the 

following testing environment.  

 

Processor  -  Intel Core 2 Duo 1.83GHz 

Memory  - 2GB 

Operating System- Windows XP 

 

The results presented here are focused only on the 

solving of the standard LP problem provided by the LP 

Problem Formulator exp lained in section 4.  

 

6.1 Tranformer Performance 
The standard LP problem generated has to be 

transformed into the Karmarkar’s Canonical form in  

order to solve it by the solver. Therefore overall 

performance of the solving of the LP problem is 

dependent on the performance of the transformer. In  

this implementation, as mentioned in section 5, 

transformer is has two versions of implementations, the 

single core and the dual core version. The version, 

which will be running is dependent on the 

environment. Tab le 1 contains test results for the 

transformer. 

 

Packages Single Core(ms) Dual Core(ms) 

100 71 63 

250 107 91 

500 222 153 

1000 1136 1008 

1500 2832 2224 

2000 5773 5058 

2500 9988 8602 

3000 32797 24121 

Table 1 - Tranformer Performance 

Graphed results are presented in figure 3 

 

 
Figure 2 Tranformer Performance 

6.2 Overall Solving Performance 
 Table 2, represents the overall performance of the LP 

problem solver including the transforming time.  

 

No. of Packages Solving Time(s) 

25 5 

50 12 

75 24 

100 41 

125 61 

150 89 

175 112 

200 155 

225 210 

250 290 

Table 2 - Solver Performance 

 

 
Figure 3 Solver Performance 

 

7. Conclusion 
 

By this it  is evident that, Karmarkar’s Pro jective 

Scaling Algorithm can be efficiently implemented in a 

programmat ic way to solve real world large scale 

linear programming problems.  

The Transformer and the Solver of this  

implementation in isolation can be easily used as linear 

programming problem solver due to the modularized  

implementation. 

In this problem instance for the tour operator, the 

product planning cost can be lessoned, in the mean  

time being able to produce highly profitable set of 

vacation packages, so that the vacation package 

synthesis process will optimized ensuring high profits 

to the tour operator. 

 

 

 

 



8. Acknowledgements  
 

The authors wish to acknowledge the great 

guidance and support given by Dr. Shehan Perera, Mr. 

Yohan Welikala and Mr. Kishan Wimalarne for the 

successful completion of this effort .  

 

 

9. References 
 
[1] N.Karmarkar “A New Polynomial-time Algorithm for 

Linear Programming”, Combrinatorica, 4, pp. 373-395, 1984 

 

[2] N.Karmarkar and K.G. Ramakrishnan, “Implementation 

and Computational Results of the Karmarkar Algorithm for 
Linear Programming, Using an Iterative M ethod for 

Computing Projections”,13th International Math. Prog. 

Symposium, Tokyo, Japan, August 1988. 

 

[3] Edwin K.P. Chong, Stanislaw H. Zak, “An Introduction 
to Optimization”, A Wiley-lnterscience Publication 2001 

 

 [4] Khachiyan, L. G., “A Polynomial Algorithm for Linear 

Programming,” Doklady Akad.Nauk USSR 244, 1093–1096, 

1979, pages 1093–1096, Translated in Soviet Math.  
Doklady 20, 1979, pages 191–194 

 

[5] S. Wright: Interior - Point Methods, Computer Sciences  

Department, University of Wisconsin - Madison, 2002. 

 
[6] David G. Luenburger, Yinyu Ye, “Linear and Nonlinear 

Programming-Third Edition”, Springer Publication 2007 

 

[7] “Numerical Methods for the STEM Undergraduate,” 

[Online]. Available: 
http://numericalmethods.eng.usf.edu/topics/lu_decompositio

n.html [Accessed: July 7 2008]. 

 

[8] Joshua Bloch, “Effective Java-Second Edition”, Addison-

Wesley Publication 2001 
 

 

 

 

http://numericalmethods.eng.usf.edu/topics/lu_decomposition.html
http://numericalmethods.eng.usf.edu/topics/lu_decomposition.html

